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ABSTRACT

Automated blood vessel segmentation is an important issue

for assessing retinal abnormalities and diagnoses of many dis-

eases. The segmentation of vessels is complicated by huge

variations in local contrast, particularly in case of the minor

vessels. In this paper, we propose a new method of texture

based vessel segmentation to overcome this problem. We use

Gaussian and L∗a∗b∗ perceptually uniform color spaces with

original RGB for texture feature extraction on retinal images.

A bank of Gabor energy filters are used to analyze the tex-

ture features from which a feature vector is constructed for

each pixel. The Fuzzy C-Means (FCM) clustering algorithm

is used to classify the feature vectors into vessel or non-vessel

based on the texture properties. From the FCM clustering out-

put we attain the final output segmented image after a post

processing step. We compare our method with hand-labeled

ground truth segmentation of five images and achieve 84.37%

sensitivity and 99.61% specificity.

Index Terms— Medical Image, texture classification, Ga-

bor energy filter bank, FCM clustering, image segmentation

1. INTRODUCTION

The automatic detection of blood vessels is very important as

ophthalmologists can potentially screen larger populations for

vessel abnormalities. In contrast, manual delineation of ves-

sels becomes tedious or even impossible when the number of

vessels in an image is large or when a large number of images

are acquired. Blood vessel appearance can provide informa-

tion on pathological changes caused by some diseases includ-

ing diabetes, hypertension, and arteriosclerosis. Changes in

retinal vasculature, such as hemorrhages, angiogenesis; in-

creases in vessel tortuosity, blockages and arteriolar-venular

diameter ratios are important indicators of, for example, dia-

betic retinopathy, and retinopathy of prematurity and cardio-

vascular risk. Information about blood vessels in retinal im-

ages can be used in grading disease severity or as part of the

process of automated diagnosis of diseases [1].

Automated retinal segmentation is complicated by the fact

that the width of the retinal vessels can vary from large to

very small, and the local contrast of vessels is unstable, espe-

cially in unhealthy retinal images. Although a large number

of schemes [1, 2, 3, 4, 5] have been proposed for the detection

of blood vessels, a huge improvement in detection procedures

remains a necessity for the detection of minor vessels. So far,

the maximum detection rate achieved 94.4% overall [3] and

for minor vessels it is only 75% [4].

In this paper we propose a novel approach for vessel seg-

mentation which is equally efficient to detect major and mi-

nor vessels. We consider Gaussian and L∗a∗b∗ perceptually

uniform color spaces with the original RGB image for texture

feature extraction. To extract features, a bank of Gabor energy

filters with three wavelengths and twenty-four orientations is

applied in each selected color channel. Then a texture image

is constructed from the maximum response of all orientations

for a particular wavelength in each color channel. From the

texture images, a feature vector is constructed for each pixel.

These feature vectors are classified using the FCM clustering

algorithm. Finally, we segment the image based on the cluster

centroid value.

The rest of the paper is organized as follows: Section 2 in-

troduces our proposed method of blood vessel segmentation

using unsupervised texture classification. Image color space

transformation and preprocessing technique are described in

section 3. Section 4 and 5 illustrate texture analysis and clas-

sification procedure. The overall results are provided in sec-

tion 6 and finally conclusion and future research directions

are drawn in section 7.

2. PROPOSED METHOD

We propose a method for blood vessel segmentation which

is based on the texture property analysis of vessel and non

vessel parts in the color retinal images. The reasons are as

follows. Firstly, due to large variation of local contrast in the

retinal image, texture analysis is more appropriate to extract

features from vessel and non vessel parts in the retinal im-

ages. Secondly, a color texture is a spatio-chromatic pattern

and can be defined as the ”distribution of colors over a sur-

face”; therefore, incorporating color into texture analysis is

enhancing the procedure. The original retinal images are in

RGB color space which is not perceptually uniform and Eu-

clidean distances in 3D RGB space do not correspond to color
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differences as perceived by humans. In addition, perceptually

uniform color spaces are very effective in rotation invariant

color texture analysis. So, we use perceptually uniform color

spaces along with original RGB color channels to extract tex-

ture features.

At first we apply the transformation of original RGB im-

age into Gaussian and L∗a∗b∗ color space. We choose first

two components of Gaussian color space Ê and Êλ, Lumi-

nance L from L∗a∗b∗ color space and Green channel G from

RGB color space due to the higher contrast of vessel and

background which is convenient for texture analysis. We ap-

ply Adaptive Histogram Equalization (AHE) method to these

four different color channel images for contrast enhancement.

For each of these color channels, we apply a bank of Gabor

filters with twenty-four orientations and three wavelengths for

texture feature extraction. We construct the texture image in

each color channel for every wavelength considering the max-

imum response of all twenty-four orientations. These texture

images are used to analyze the number of clusters which lat-

ter will be used as the classifier input. Consequently, we con-

struct twelve texture images for each original retinal image.

We construct a feature vector for every pixel mapping each

pixel position of all these texture images (i.e. each feature

vector is in the length of twelve elements). These feature vec-

tors are classified as a vessel or background part using un-

supervised FCM clustering algorithm. From the output of

the FCM clustering algorithm we construct a 2D matrix (as

original image dimension) with cluster numbers which have

the highest membership values (for each position). Finally,

we produce the ultimate segmented image with converting

the cluster numbers into binary values considering the clus-

ter centroid values. Figure 1 portrays the overall technique of

our proposed method.

3. COLOR SPACE TRANSFORMATION AND
PREPROCESSING

Generally image data is given in RGB space (because of the

availability of data produced by the camera apparatus). The

definition of L∗a∗b∗ is based on an intermediate system, known

as the CIE XYZ space (ITU-Rec 709). This space is derived

from RGB as below [6]

X = 0.412453R + 0.357580G + 0.180423B
Y = 0.212671R + 0.715160G + 0.072169B
Z = 0.019334R + 0.119193G + 0.950227B

(1)

L∗a∗b∗ color space is defined as follows:

L∗ = 116f(Y/Yn) − 16
a∗ = 500[f(X/Xn) − f(Y/Yn)]
b∗ = 200[f(Y/Yn)] − f(Z/Zn)

(2)

where f(q) = q1/3 if q < 0.008856 otherwise f(q) = 7.87+
16/116. Xn, Yn and Zn represent a reference white as de-

fined by a CIE standard illuminant, D65 in this case. This

Fig. 1. The vessel segmentation model.

Fig. 2. Original RGB image and Gaussian transformed first

and second component image (left to right).

is obtained by setting R = G = B = 100 in (1), q ∈
{X/Xn, Y/Yn, Z/Zn}. Gaussian color model can also be

well approximated by the RGB values. The first three com-

ponents Ê, Êλ and Êλλ of the Gaussian color model (Tay-

lor expansion of the Gaussian weighted spectral energy dis-

tribution at Gaussian central wavelength and scale) can be

approximated from the CIE 1964 XYZ basis when taking

λ0 = 520nm (Gaussian central wavelength) and σλ = 55nm
(scale) as follows [7]
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Êλ
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Z

⎞
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The product of (1) and (3) gives the desired implementation of

the Gaussian color model in RGB terms (Fig. 2). The Adap-

tive Histogram Equalization method was implemented, using

MATLAB, to enhance the contrast of the image intensity by

transforming the values using contrast-limited adaptive his-

togram equalization (Fig. 3).

Fig. 3. Retinal Green channel image in figure 2 (left) and its

AHE filtered image (right).
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4. TEXTURE FEATURES EXTRACTION

Texture generally describes second order property of surfaces

and scenes, measured over image intensities. A Gabor fil-

ter has weak responses along all orientations on the smooth

(background) surface. On the other hand, when it positioned

on a linear pattern object (like a vessel) the Gabor filter pro-

duces relatively large differences in its responses when the

orientation parameter changes [4]. Hence, the use of Ga-

bor filters to analyze the texture of the retinal images is very

promising. In the following two subsections we illustrate the

Gabor filter based texture analysis method.

4.1. Gabor Filter

An input image I(x, y), (x, y) ∈ Ω where Ω is the set of

image points, is convolved with a 2D Gabor function g(x, y),
(x, y) ∈ ω, to obtain a Gabor feature image r(x, y) (Gabor

filter response) as follows [8]

r(x, y) =
∫∫

Ω

I(ξ, η)g(x − ξ, y − η)dξdη (4)

We use the following family of 2D Gabor functions to model

the spatial summation properties of an image [8]

gξ,η,λ,Θ,φ(x, y) = exp(−x′2+γ2y′2

2σ2 ) cos(2π x′
λ + φ)

x′ = (x − ξ) cos Θ − (y − η) sinΘ
y′ = (x − ξ) cos Θ − (y − η) sin Θ

(5)

where the arguments x and y specify the position of a light

impulse in the visual field and ξ, η, σ, γ, λ,Θ, φ are parame-

ters. The pair (ξ, η) specifies the center of a receptive field

in image coordinates. The standard deviation σ of the Gaus-

sian factor determines the size of the receptive filed. Its ec-

centricity and herewith the eccentricity of the receptive field

ellipse is determined by the parameter γ called the spatial

aspect ratio. This ratio is known to vary in a limited range

of 0.23 < γ < 0.92. We used γ = 0.5 for our simula-

tion. The parameter λ is the wavelength of the cosine factor

which determines the preferred spatial frequency 1
λ of the re-

ceptive field function gξ,η,λ,Θ,φ(x, y). The ratio σ/λ deter-

mines the spatial frequency bandwidth of a linear filter based

on the function g. The parameter Θ specifies the orientation

of the normal to the parallel excitatory and inhibitory stripe

zones - this normal is the axis x′ in (5). Finally, the param-

eter φ ∈ (−π, π), which is a phase offset argument of the

harmonic factor cos(2π x′
λ + φ), determines the symmetry of

the function gξ,η,λ,Θ,φ(x, y). For φ = 0 and φ = π it is sym-

metric with respect to the center (ξ, η) of the receptive field;

for φ = − 1
2π and φ = 1

2π, the function is antisymmetric and

all other cases are asymmetric mixture of these two. In our

simulations we used φ = 0 and φ = 1
2π.

Fig. 4. Texture analyzed image with the orientations of 15,

45 degrees and maximum response of all twenty-four orien-

tations (left to right).

4.2. Gabor Energy Features

A set of textures was obtained based on the use of Gabor fil-

ters (4) according to a multichannel filtering scheme. For this

purpose, each image was filtered with a set of Gabor filters

with different preferred orientation, spatial frequencies and

phases. The filter results of the phase pairs were combined,

yielding the Gabor energy quantity [8]:

Eξ,η,Θ,λ =
√

r2
ξ,η,Θ,λ,0 + r2

ξ,η,Θ,λ,π/2 (6)

where r2
ξ,η,Θ,λ,0 and r2

ξ,η,Θ,λ,π/2 are the outputs of the sym-

metric and antisymmetric filters. We used Gabor energy fil-

ters with twenty-four equidistant preferred orientations (Θ =
0, 15, 30, .., 345) and three preferred spatial frequencies (λ =
6, 7, 8). In this way an appropriate coverage was performed

of the spatial frequency domain.

We considered the maximum response value per pixel on

each color channel to reduce the feature vector length and

complexity of training on data for the classifier. In addition,

we constructed an image (Fig. 4) on each color channel which

was used for histogram analysis to determine the cluster num-

ber. From these images we constructed twelve element length

feature vector for each pixel in each retinal image to classify

them into vessel and non-vessel using the FCM clustering al-

gorithm.

5. TEXTURE CLASSIFICATION AND IMAGE
SEGMENTATION

The FCM is a data clustering technique where in each data

point belongs to a cluster to some degree that is specified by

a membership grade. Let X = x1, x2, , xN where x ∈ RN

present a given set of feature data. The objective of the FCM

clustering algorithm is to minimize the Fuzzy C-Means cost

function formulated as [9]

J(U, V ) =
C∑

j=1

N∑
i=1

(μij)m||xi − vj ||2 (7)

V = {v1, v2, , vC} are the cluster centers. U = (μij)N×C

is fuzzy partition matrix, in which each member is between

the data vector xi and the cluster j. The values of matrix U
should satisfy the following conditions:

μij ∈ [0, 1],∀i = 1, .., N,∀j = 1, .., C (8)
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Fig. 5. Original image (left) and segmented vessel centerline

images (right).

μij = 1,∀i = 1, .., N (9)

The exponent m ∈ [1,∞] is the weighting exponent, which

determines the fuzziness of the clusters. The most commonly

used distance norm is the Euclidean distance dij = ||xi−vj ||.
We used the Matlab Fuzzy Logic Toolbox for clustering

253440 vectors (the size of the retinal image is 512x495) in

length twelve for each retinal image. In each retinal image

clustering procedure, the number of clusters was assigned af-

ter analyzing the histogram of the texture image. The param-

eter values used for the FCM clustering were as follows. The

exponent value of 2 for the partition matrix, maximum num-

ber of iterations was set to 1000 for the stopping criterion and

the minimum amount of improvement being 0.00001. We re-

ceived the membership values on each cluster for every vec-

tor, from which we picked the cluster number that belonged to

the highest membership value for each vector and converted

it into a 2D matrix. From this matrix we produced the binary

image considering the cluster central intensity value which

identifies the blood vessels only.

6. EXPERIMENTAL RESULTS

Using the DRIVE database [10] we applied our method for

vessel segmentation. For performance evaluation, we detected

the vessel centerline in our output segmented images and hand-

labeled ground truth segmented (GT) images applying the

morphological thinning operation (Fig. 5). We did not com-

pare the segmented images directly with the GT images as the

vessel width in the GT images were not always accurate al-

though the vessel position were proper (also reported in [1]).

In our experiment, we compared five skeletonized images of

our method with the GT images. We assumed that the max-

imum centerline movement on the GT images is two pixels.

A pixel on centerline is considered positive and a background

pixel is negative. We achieved an overall 84.37% sensitiv-

ity and 99.61% specificity. Hoover et al. [1] method on the

same five segmented images resulted in 68.23% sensitivity

and 98.06% specificity. Clearly, our method produces supe-

rior results.

7. CONCLUSION AND FUTURE WORK

In this paper we proposed a novel approach for a texture based

vessel segmentation technique. Our method is very efficient

in detecting both major and minor blood vessels. Currently,

we are working on the segmented images to measure vessel

width and vessel bifurcation and crossover detection.
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